翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

capillary action : ウィキペディア英語版
capillary action

Capillary action (sometimes capillarity, capillary motion, or wicking) is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to, external forces like gravity. The effect can be seen in the drawing up of liquids between the hairs of a paint-brush, in a thin tube, in porous materials such as paper, in some non-porous materials such as liquefied carbon fiber, or in a cell. It occurs because of intermolecular forces between the liquid and surrounding solid surfaces. If the diameter of the tube is sufficiently small, then the combination of surface tension (which is caused by cohesion within the liquid) and adhesive forces between the liquid and container act to lift the liquid. In short, the capillary action is due to the pressure of cohesion and adhesion which cause the liquid to work against gravity.
== History ==

The first recorded observation of capillary action was by Leonardo da Vinci.〔See:
* Manuscripts of Léonardo de Vinci (Paris) , vol. N, folios 11, 67, and 74.
* Guillaume Libri, ''Histoire des sciences mathématiques en Italie, depuis la Renaissance des lettres jusqu'a la fin du dix-septième siecle'' (of the mathematical sciences in Italy, from the Renaissance until the end of the seventeenth century ) (Paris, France: Jules Renouard et cie., 1840), vol. 3, (page 54 ). From page 54: ''"Enfin, deux observations capitales, celle de l'action capillaire (7) et celle de la diffraction (8), dont jusqu'à présent on avait méconnu le véritable auteur, sont dues également à ce brillant génie."'' (Finally, two major observations, that of capillary action (7) and that of diffraction (8), the true author of which until now had not been recognized, are also due to this brilliant genius.)
* C. Wolf (1857) "Vom Einfluss der Temperatur auf die Erscheinungen in Haarröhrchen" (On the influence of temperature on phenomena in capillary tubes) ''Annalen der Physik und Chemie'', 101 (177) : 550–576 ; see footnote on (page 551 ) by editor Johann C. Poggendorff. From page 551: ''" ... nach Libri (''Hist. des sciences math. en Italie'', T. III, p. 54) in den zu Paris aufbewahrten Handschriften des grossen Künstlers Leonardo da Vinci (gestorben 1519) schon Beobachtungen dieser Art vorfinden; ... "'' ( ... according to Libri (''History of the mathematical sciences in Italy'', vol. 3, p. 54) observations of this kind (of capillary action ) are already to be found in the manuscripts of the great artist Leonardo da Vinci (died 1519), which are preserved in Paris; ... )〕〔More detailed histories of research on capillary action can be found in:
* David Brewster, ed., ''Edinburgh Encyclopaedia'' (Philadelphia, Pennsylvania: Joseph and Edward Parker, 1832), volume 10, (pp. 805–823 ).
* The 1911 ''Encyclopædia Britannica'', volume 5, s:1911 Encyclopædia Britannica/Capillary Action .
* John Uri Lloyd (1902) ("References to capillarity to the end of the year 1900," ) ''Bulletin of the Lloyd Library and Museum of Botany, Pharmacy and Materia Medica'', 1 (4) : 99–204.〕 A former student of Galileo, Niccolò Aggiunti (1600–1635), was said to have investigated capillary action.〔In his book of 1759, Giovani Batista Clemente Nelli (1725–1793) stated (p. 87) that he had ''"un libro di problem vari geometrici ec. e di speculazioni, ed esperienze fisiche ec."'' (a book of various geometric problems and of speculation and physical experiments, etc.) by Aggiunti. On pages 91–92, he quotes from this book: Aggiunti attributed capillary action to ''"moto occulto"'' (hidden/secret motion). He proposed that mosquitoes, butterflies, and bees feed via capillary action, and that sap ascends in plants via capillary action. See: Giovambatista Clemente Nelli, ''Saggio di Storia Letteraria Fiorentina del Secolo XVII'' … (on Florence's literary history in the 17th century, … ) (Lucca, (Italy): Vincenzo Giuntini, 1759), (pp. 91–92. )〕 In 1660, capillary action was still a novelty to the Irish chemist Robert Boyle, when he reported that "some inquisitive French Men" had observed that when a capillary tube was dipped into water, the water would ascend to "some height in the Pipe". Boyle then reported an experiment in which he dipped a capillary tube into red wine and then subjected the tube to a partial vacuum. He found that the vacuum had no observable influence on the height of the liquid in the capillary, so the behavior of liquids in capillary tubes was due to some phenomenon different from that which governed mercury barometers.〔Robert Boyle, ''New Experiments Physico-Mechanical touching the Spring of the Air'', ... (Oxford, England: H. Hall, 1660), pp. 265–270. Available on-line at: (Echo (Max Planck Institute for the History of Science; Berlin, Germany) ).〕
Others soon followed Boyle's lead.〔See, for example:
* Robert Hooke (1661) ''An attempt for the explication of the Phenomena observable in an experiment published by the Right Hon. Robert Boyle, in the 35th experiment of his Epistolical Discourse touching the Air, in confirmation of a former conjecture made by R. Hooke.'' ().
* Hooke's ''An attempt for the explication'' ... was reprinted (with some changes) in: Robert Hooke, ''Micrographia'' ... (London, England: James Allestry, 1667), pp. 12–22, ("Observ. IV. Of small Glass Canes." )
* Geminiano Montanari, (''Pensieri fisico-matematici sopra alcune esperienze fatte in Bologna'' ... ) (ideas about some experiments done in Bologna ... ) (Bologna, (Italy): 1667).
* George Sinclair, (''Ars Nova et Magna Gravitatis et Levitatis'' ) (and great powers of weight and levity ) (Rotterdam, Netherlands: Arnold Leers, Jr., 1669).
* Johannes Christoph Sturm, ''Collegium Experimentale sive Curiosum'' (of experiments, or Curiosity ) (Nüremberg (Norimbergæ), (Germany): Wolfgang Moritz Endter & the heirs of Johann Andreas Endter, 1676). See: (''"Tentamen VIII. Canaliculorum angustiorum recens-notata Phænomena, ... "'' ) (Essay 8. Recently noted phenomena of narrow capillaries, ... ), pp. 44–48.〕 Some (e.g., Honoré Fabri,〔See:
* Honorato Fabri, ''Dialogi physici'' ... ((Lyon (Lugdunum), France: 1665), (pages 157 ff ) "Dialogus Quartus. In quo, de libratis suspensisque liquoribus & Mercurio disputatur. (Dialogue four. In which the balance and suspension of liquids and mercury is discussed).
* Honorato Fabri, ''Dialogi physici'' ... ((Lyon (Lugdunum), France: Antoine Molin, 1669), (pages 267 ff ) "Alithophilus, Dialogus quartus, in quo nonnulla discutiuntur à D. Montanario opposita circa elevationem Humoris in canaliculis, etc." (Alithophilus, Fourth dialogue, in which Dr. Montanari's opposition regarding the elevation of liquids in capillaries is utterly refuted).〕 Jacob Bernoulli〔Jacob Bernoulli, (''Dissertatio de Gravitate Ætheris'' ) (Amsterdam, Netherlands: Hendrik Wetsten, 1683).〕) thought that liquids rose in capillaries because air couldn't enter capillaries as easily as liquids, so the air pressure was lower inside capillaries. Others (e.g., Isaac Vossius,〔Isaac Vossius, ''De Nili et Aliorum Fluminum Origine'' (the sources of the Nile and other rivers ) (Hague (Hagæ Comitis), Netherlands: Adrian Vlacq, 1666), (pages 3–7 ) (chapter 2). 〕 Giovanni Alfonso Borelli,〔Borelli, Giovanni Alfonso ''De motionibus naturalibus a gravitate pendentibus'' (Lyon, France: 1670), page 385, Cap. 8 Prop. CLXXXV (Chapter 8, Proposition 185.). Available on-line at: (Echo (Max Planck Institute for the History of Science; Berlin, Germany) ).〕 Louis Carré,〔Carré (1705) ("Experiences sur les tuyaux Capillaires" ) (Experiments on capillary tubes), ''Mémoires de l'Académie Royale des Sciences'', pp. 241–254.〕 Francis Hauksbee,〔See:
* Francis Hauksbee (1708) ("Several Experiments Touching the Seeming Spontaneous Ascent of Water," ) ''Philosophical Transactions of the Royal Society of London'', 26 : 258–266.
* Francis Hauksbee, ''Physico-mechanical Experiments on Various Subjects'' ... (London, England: (Self-published), 1709), pages 139–169.
* Francis Hauksbee (1711) ("An account of an experiment touching the direction of a drop of oil of oranges, between two glass planes, towards any side of them that is nearest press'd together," ) ''Philosophical Transactions of the Royal Society of London'', 27 : 374–375.
* Francis Hauksbee (1712) ("An account of an experiment touching the ascent of water between two glass planes, in an hyperbolick figure," ) ''Philosophical Transactions of the Royal Society of London'', 27 : 539–540.〕 Josia Weitbrecht〔See:
* Josia Weitbrecht (1736) ("Tentamen theoriae qua ascensus aquae in tubis capillaribus explicatur" ) (Theoretical essay in which the ascent of water in capillary tubes is explained), ''Commentarii academiae scientiarum imperialis Petropolitanae'' (Memoirs of the imperial academy of sciences in St. Petersburg), 8 : 261–309.
* Josia Weitbrecht (1737) ("Explicatio difficilium experimentorum circa ascensum aquae in tubis capillaribus" ) (Explanation of difficult experiments concerning the ascent of water in capillary tubes), ''Commentarii academiae scientiarum imperialis Petropolitanae'' (Memoirs of the imperial academy of sciences in St. Petersburg), 9 : 275–309.〕) thought that the particles of liquid were attracted to each other and to the walls of the capillary.
Although experimental studies continued during the 18th century,〔For example:
* In 1740, Christlieb Ehregott Gellert (1713–1795) observed that like mercury, molten lead would not adhere to glass and therefore the level of molten lead was depressed in a capillary tube. See: C. E. Gellert (1740) "De phenomenis plumbi fusi in tubis capillaribus" (On phenomena of molten lead in capillary tubes) ''Commentarii academiae scientiarum imperialis Petropolitanae'' (Memoirs of the imperial academy of sciences in St. Petersburg), 12 : 243–251. Available on-line at: (Archive.org ).
* Gaspard Monge (1746–1818) investigated the force between panes of glass that were separated by a film of liquid. See: Gaspard Monge (1787) ("Mémoire sur quelques effets d'attraction ou de répulsion apparente entre les molécules de matière" ) (Memoir on some effects of the apparent attraction or repulsion between molecules of matter), ''Histoire de l'Académie royale des sciences, avec les Mémoires de l'Académie Royale des Sciences de Paris'' (History of the Royal Academy of Sciences, with the Memoirs of the Royal Academy of Sciences of Paris), pp. 506–529. Monge proposed that particles of a liquid exert, on each other, a short-range force of attraction, and that this force produces the surface tension of the liquid. From p. 529: ''"En supposant ainsi que l'adhérence des molécules d'un liquide n'ait d'effet sensible qu'à la surface même, & dans le sens de la surface, il seroit facile de déterminer la courbure des surfaces des liquides dans le voisinage des parois qui les conteinnent ; ces surfaces seroient des lintéaires dont la tension, constante dans tous les sens, seroit par-tout égale à l'adhérence de deux molécules ; & les phénomènes des tubes capillaires n'auroient plus rein qui ne pût être déterminé par l'analyse."'' (Thus by assuming that the adhesion of a liquid's molecules has a significant effect only at the surface itself, and in the direction of the surface, it would be easy to determine the curvature of the surfaces of liquids in the vicinity of the walls that contain them ; these surfaces would be menisci whose tension, () constant in every direction, would be everywhere equal to the adhesion of two molecules ; and the phenomena of capillary tubes would have nothing that could not be determined by analysis (calculus ).)〕 a successful quantitative treatment of capillary action〔In the 18th century, some investigators did attempt a quantitative treatment of capillary action. See, for example, Alexis Claude Clairaut (1713–1765) ''Theorie de la Figure de la Terre tirée des Principes de l'Hydrostatique'' (of the figure of the Earth based on principles of hydrostatics ) (Paris, France: David fils, 1743), ''Chapitre X. De l'élevation ou de l'abaissement des Liqueurs dans les Tuyaux capillaires'' (Chapter 10. On the elevation or depression of liquids in capillary tubes), (pages 105–128. )〕 was not attained until 1805 by two investigators: Thomas Young of England〔Thomas Young (January 1, 1805) ("An essay on the cohesion of fluids," ) ''Philosophical Transactions of the Royal Society of London'', 95 : 65–87. 〕 and Pierre-Simon Laplace of France.〔Pierre Simon marquis de Laplace, ''Traité de Mécanique Céleste'', volume 4, (Paris, France: Courcier, 1805), ''Supplément au dixième livre du Traité de Mécanique Céleste'', (pages 1–79 ).〕 They derived the Young–Laplace equation of capillary action. By 1830, the German mathematician Carl Friedrich Gauss had determined the boundary conditions governing capillary action (i.e., the conditions at the liquid-solid interface).〔Carl Friedrich Gauss, ''Principia generalia Theoriae Figurae Fluidorum in statu Aequilibrii'' (principles of the theory of fluid shapes in a state of equilibrium ) (Göttingen, (Germany): Dieterichs, 1830). Available on-line at: (Hathi Trust ).〕 In 1871, the British physicist William Thomson (Lord Kelvin) determined the effect of the meniscus on a liquid's vapor pressure — a relation known as the Kelvin equation.〔William Thomson (1871) ("On the equilibrium of vapour at a curved surface of liquid," ) ''Philosophical Magazine'', series 4, 42 (282) : 448–452.〕 The German physicist Franz Ernst Neumann (1798–1895) subsequently determined the interaction between two immiscible liquids.〔Franz Neumann with A. Wangerin, ed., (''Vorlesungen über die Theorie der Capillarität'' ) (on the theory of capillarity ) (Leipzig, Germany: B. G. Teubner, 1894).〕
Albert Einstein's first paper, which was submitted to ''Annalen der Physik'' in 1900, was on capillarity.〔Albert Einstein (1901) ("Folgerungen aus den Capillaritätserscheinungen" ) (Conclusions () from capillary phenomena), ''Annalen der Physik'', 309 (3) : 513–523.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「capillary action」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.